
quacy within the limits 15%. Figure 4 shows the analogous curves for a channel with a 
screw insert. 

Previously, Nazmeev and Mumladze [7] solved this problem by using the iteration method 
of variable directions. 

NOTATION 

R, ~, z, polar coordinates; R' ~' ' , , z , new independent variables with helical symmetry; 
S, pitch; P, pressure; Vr, V~, Vz, radial, circular, and axial components of the flow velo- 
city; U, effective (structural) viscosity; ~, the region; F, boundary of the region; F, func- 
tional subject to minimization; I2, second invariant of the deformation velocity tensor; An, 
coefficients of the basis function; i, j, exponents of the power; ~, fluidity of the non- 
Newtonian liquid; @0, ~, fluidities for T + 0 and T § ~; T, intensity of the shear stress; 
8, Tz, measure and limit of the structural stability of the liquid; k, number of the itera- 
tion; L, an operator; U and h, arbitrary functions which satisfy the boundary conditions U, 
hlF = 0; Lu', derivative of the operator L; e~, e 2, unit vectors of the cylindrical coor- 
dinate system; 6, exponent of the power in the rheological model; (Lu'h, h), (L(tU), U), 
(SP/az, U), scalar products in the space L2; IlhJl 2, square of the norm of the element h in 
space L2; R, radius of the tube; R I and R2, radius of the inner surface of the outer tube 
and the radius of the outer surface of the inner tube; V, mean-flow-rate velocity of the flow; 
fn (n = l,...,m), a complete and linearly independent system of elements; B, a related oper- 
ator; Jk, Bessel functions; and ~kp, root of the Bessel function. 
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AXISYMMETRIC PROBLEM ON THE IMPREGNATION OF A 

HEATED FILLER BY A VISCOPLASTIC LIQUID 

E. A. Kosachevskaya and V. M. Sidorova UDC 532.546 

This article examines the penetration of a viscoplastic liquid (binder) into 
a preheated porous cylindrical braid (filler) moving inside it. 

The study [i] examined a production process involving the continuous impregnation of 
porous fillers. This process is common in the manufacture of many composite materials. 
Since the viscosity of the binders is often too great at room temperature and since there 
are serious technical problems with the use of high pressure gradients, it has been pro- 
posed that fluid resistance during filtration be reduced by preheating the filler. A 
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similarity solution was obtained to a two-dimensional problem concerning the impregnation 
of the band of filler moving at a constant velocity in the impregnating composition. The 
composition had the properties of a viscous Newtonian fluid. 

The present article examines a similar problem concerning the impregnation of a cylin- 
drical braid (filler) drawn through an impregnation chamber containing a viscoplastic li- 
quid (a polymer melt, resin, etc.). The filtration of the liquid is described by the genera- 
lized Darcy's law [2] 

k ' O p  ) O~ 
i >i ,  

0 ~t --~-r <~j. 

(1) 

The viscosity p and the initial pressure gradient j are decreasing functions of temperature T: 

= p, jq~ (O), ] = ]sr  (O), O -  r -  'L' ( 2 )  
T o -  T.f 

We assume for a filler with fine pores that the temperatures of the solid and liquid phases 
at each point of its impregnated part are the same and the velocity of the liquid in the x 
direction coincides with the pulling velocity. Given a medium with a sufficiently high 
thermal conductivity and a low filtration velocity, we can assume that at any moment of time 
there is a steady-state temperature distribution satisfying the Laplace equation. The solu- 
tion of this equation satisfying the boundary conditions 

has the form 

0 ( x ,  R ) = 0 ,  0 ( x ,  R - - 6 ) - - 1  

In ___r 
R 

0 (x, r) - 

( 3 )  

(4) 

The coordinate of the impregnation front 8 is related to the filtration velocity by the 
equation 

vT = - -  ~u6' (x). ( 5 )  

The c o n t i n u i t y  e q u a t i o n  f o r  an i n c o m p r e s s i b l e  l i q u i d  l e a d s  to  t h e  e q u a t i o n  

c (x) (6) 
V r - -  , . 

r 

In  a c c o r d a n c e  w i t h  Eq. ( 5 ) ,  a t  r = R - 6, we f i n d  t h a t  

c (x) = ~u (R - -  6) 6 '  ( 7 )  

I n t e g r a t i n g  Eq. (1) over  r and a l l o w i n g  f o r  ( 2 ) ,  ( 3 ) ,  ( 6 ) ,  and t h e  boundary  c o n d i t i o n s  

p (x, R) = pf + pc, p (x, R - -  6) = po ( 8 )  
we have 

~ - 6  ~p (0) ~-~ 
~J c (x) i' dr -k ]f t" ~ (O) dr = --  AP' (9) 
k R r h 

where Ap = pf + Pc - P0, Pc is the capillary pressure. Changing over to the variable 0 in 
Eq. (9) and assuming that i - 6/E = y, we obtain 

c ( x ) =  - - - - ~ k  Ap [1 q- ]~/~ F ( y ) ] ,  (10) 
z ~t* hp 

1 

where ~'r = ~f in  y [~d0;  F (y )  = in  y f~y0  dO. 
0 0 

We use  Eqs. (7)  and (10)  to  f i n d  t h e  e x p r e s s i o n  f o r  t h e  l e n g t h  o f  t h e  working  s e c t i o n  

L - -  R, ~ ylnydy (11) 
~ 1 + pF (y) ' 

where ~ = (kAp)/(EuRp*); ~ = (jfR)/Ap. 
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To determine U* and F(y), it is necessary to assign the functions ~(0)and ~(0). 
most general dependence of viscosity on temperature has the form [3] 

where A is a slowly changing function of temperature which can be considered constant. 
follows from this that 

~ (0) = exp B T~ + 0 (To - -  Ti) T~ 

We have t h e  f o l l o w i n g  e x p r e s s i o n  f o r  t h e  c h a r a c t e r i s t i c  " a c t i v a t i o n  t e m p e r a t u r e "  B 

B-- TIT~ In IX1 
To--TI Ixo 

With a small relative temperature difference (T O - Tf)/Tf << i, Eq. 

(0) = exp (-- mO), m = In ~I , 
Ixo 

and, finally, at m << 1 

The values of U* corresponding to Eqs. (13), 

B 
I x * = I x l -  exp 

T O -- T I 

The 

(12) 

I t  

(13) 

(14) 

(13) takes the form 

(15) 

qg(O)= l - - m 0 ,  m =  1 - -  Ix__o (16) 
Ixf 

(15 ) ,  and (16 ) ,  r e s p e c t i v e l y ,  a r e  equa l  to :  

( - -  T ~ )  [ ~ exp ( ~ ~  (17) 

- -  T--2-f exp ( ~ ) + E i ( T ~ ) - - E i ( T ~ )  ] 
B 

exp (t___~) dr, 
Ei (x) = t 

l~, _ ~I [1 -- exp(--m)], 
m 

1 
Ix*- T (~~ + Ix1)- 

(18) 

(19) 

Taking the same temperature dependences for the initial pressure gradient, we find the ex- 
pression for F(y): 

1 

D 
F(y)=exp (---~-f ) ~ y~ exp [ TI+O(To_ TI)] dO' 

0 

F (y) y exp (-- n) -- 1 ]f = , n = lrt- , 
In g -  n ]o 

- -  y - - l - - n  y , n = l - - - -  
F ( y ) =  lny  t lny  if 

(20) 

(21) 

(22) 

Here, D is the "activation temperature," determined from an equation similar to (14): 

D - -  TIT~ 
To--T~ io 

We use Eqs. (19), (22), and (Ii) with the condition ~ ~ 1 to obtain the following expres- 
sion of the length of the working section of the unit for linear relations ~(e) and ~(e) 

L =  R (1 + 5 - - 2 n  ~\ 
---7- )- (23) 
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Thus, the length over which impregnation occurs is directly proportional to the pulling 
velocity and inversely proportional to the pressure difference. The number RS(5-2n)/36~ 
characterizes the increase in this length due to the initial pressure gradient. 

NOTATION 

v r, radial filtration velocity; u, R, k, and e, pulling velocity, radius, permeability, 
and porosity of the cylindrical filler; pf, P0, pressure of the liquid at the boundary with 
the filler and air pressure in its pores; Tf, To, corresponding temperatures; pf, u0, vis- 
cosities of the liquid at the temperatures Tf and To; jf and J0, initial pressure gradients 
at these temperatures: 6, thickness of the impregnated part of the filler. 
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EMISSIVITY OF STEELS AND ALLOYS IN THE SPECTRAL REGION 2-13 ~m 

V. A. Zaitsev, I. V. Gorbatenko, 
and M. A. Taimarov 

UDC 536.3 

The spectral emissivity of steels and alloys in the temperature range 700- 
900~ is experimentally studied. 

Data on the spectral emissivity of structural materials is used as the initial data in 
present methods of calculating radiative heat transfer. Due to the complexity of the experi- 
ments and the great range of materials, such data is available only for a small number of 
grades. 

Here we experimentally study the normal spectral emissivity of steels and alloys 40Kh2N- 
2MA, 38KhN3MA, 12KhlMF, EP-182, 08KhI8NIOT, St3sp, EI-712, 09G2S, steel 20, IKhI8NIOT, and 
DI6AT during heating in air. 

The experimental unit was based on an IKS-14A spectrophotometer operated in the double- 
beam mode. A diagram of the unit is shown in Fig. i. The flow of heat radiation from the 
test material 8 was directed into the specimen channel, while the radiative heat flow from 
a thin-walled cylindrical model of a blackbody was directed into the comparison channel. 
The specimen and model were heated by an electric furnace 4. The temperatures of the ra- 
diating cavity of the blackbody and specimen were measured with Chromel-Alumel thermo- 
couples with a thermoelectrode diameter of 0.2 mm. The readings of the thermocouples were 
calibrated with a standard PR-30/6 thermocouple. Additional measurements of the temper- 
ature of the radiating cavity of the blackbody were obtained with a TERA-50 radiation pyro- 
meter. The thermo-emf was recorded with VK2-20 digital electronic voltammeters and an 
R363-2 dc potentiometer of accuracy class 0.002. To reliably measure the specimen temper- 
ature, the thermocouples were either caulked into the specimen or welded to it so that the 
surface of the thermocouple junction was flush with the radiating surface of the specimen. 

The optical system of the IKS-14A spectrophotometer, including the double-beam light 
source, was left unchanged. This allowed us to better adjust and check the monochromator 
and the recording part of the instrument before the tests. During final adjustment of the 
unit, the heat flows in both channels were equalized by recording the radiation from a se- 
cond, graphite model of a blackbody. When the temperatures of the blackbody models in the 
first and second channels were equal, the measured flows of heat radiation for these chan- 
nels were also equal and the recorder of the spectrophotometer showed 100% transmission. 
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